كميتهاى فيزيكى

كميتهاى نردهاى : كميتهايیى هستند كه براى مشخصص شدن آنها بيان يكى عدد كه اندازه يا مقدار آن كميت مىباشد، با يكاى معين كافـى است است

 كميتهايى مثل جابهجايـى ، سرعت و نيرو بر دارى هستنـد .

بردارهاى برابر
دو بردار در صورتى با هم برابرند كه داراى اندازه ، راستا و سوى يكسارينى برانى باشند. بردارهاى قرينه
 زاويه يـى بردار
زاويهاى است كه اين بردار در جهت مثلثاتى با راستاى مثبت محور طولها (X هـا مار مى سازد.
جمع دو بردار با استفاده از روش مثلث
در اين روش براى مهحاسبهى كه ابتداى آن روى ابتداى بردار

در اين رو ش برای محاسبهى
 بردارها و انتهاى آن روى راس مقابل متوازیالاضلا

نمايش خاصيت جابهجايى جمع بردارى (با استفاده از رو ش مثلث)

$$
\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{a}}
$$

نمايش بزر گیى (اندازهى) بردار
 عبارت ديگر X

$$
\xrightarrow[\rightarrow \rightarrow]{\rightarrow \underset{\rightarrow}{\text { جردار }} \underset{\rightarrow}{\text { جند }} \rightarrow \rightarrow}
$$

براى جمع كردن چند بردار مانند بردارهاى
 رسم مى كنيم. مطابق شكل زير بر بردارى كه ابتداى آن روى ابتداى بردار اول اول و انتهاى آن روى انتهاى بردار آخر قرار دار د بر آيند بردارها استـ.

^- بردارهاى همر $\rightarrow \rightarrow \overrightarrow{\text { اگر بر دارهاى a }}$ $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}| \quad|\vec{a}+\vec{b}|=a+b$ يعنى بزر گی (اندازهى) جمع دو بر دار همراستا و همسو برابر جمع بزرگیهاى (اندازههاى) دو بردار است. $\xrightarrow{\vec{a}} \xrightarrow{\vec{a}+\vec{b}} \xrightarrow{\vec{b}}$

$|\vec{a}+\vec{b}|=a-b$

$|\vec{a}+\vec{b}|=b-a$
: ا- بردارهاى عمود بر هـ هـ

a

تفريق دو بردار

$\underset{\rightarrow}{\text { براى به دس }}$ بردارى كه ابتداى آن روى انتهاى بردار

$$
\Rightarrow\left\{\begin{array}{l}
\vec{b}+\overrightarrow{R_{1}}=\vec{a} \Rightarrow \overrightarrow{R_{1}}=\vec{a}-\vec{b} \\
\vec{a}+\overrightarrow{R_{Y}}=\vec{b} \Rightarrow \overrightarrow{R_{Y}}=\vec{b}-\vec{a}
\end{array}\right.
$$

Y Y Y بردارهاى هم راستا و هم سو :

$$
|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}|=||\overrightarrow{\mathrm{a}}|-|\overrightarrow{\mathrm{b}}|| \quad \overrightarrow{\mathrm{z}} \quad|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}|=|\mathrm{a}-\mathrm{b}|
$$

يعنى بزر گی (اندازهى) تغريق دو بردار همرراستا و همسو برابر قلرمهطلق تفريق بزر گییهاى (اندازههاى) دو بردار است.

ஈا - بردارهاى هم راستا و ناهم سو :

$$
|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}| \quad \text { ي } \quad|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}|=\mathrm{a}+\mathrm{b}
$$

يعنى بزر گی (اندازهى) تفريق دو بردار همراستا و ناهمسو برابر جمع بزرگى هاى (اندازههاى) دو بردار است.

اگر بردارهاى a و b بر هم عمود باشند، براى بزرگى (اندازهى) تفريق دو بر دار داريم :

بيشينه و كمينه
بر آيند دو بردار وقتى بيش تر تِ
(اندازهى) جمع دو بردار

$\vec{b} \quad \rightarrow \quad$ a

$$
|\mathrm{a}-\mathrm{b}| \leqslant|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}| \leqslant \mathrm{a}+\mathrm{b}
$$

بزرگى اندازهى برآيند دو بردار در حالت كلى
بزر گی برآيند دو بردار
$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}} \Rightarrow \mathrm{R}=\sqrt{\mathrm{a}^{r}+\mathrm{b}^{r}+r a b \operatorname{Cos} \theta}$
بزرگى اندازهى تفريق دو بردار در حالت كلى
بز بز گی تفريق دو بردار
$\vec{r}=\vec{a}-\vec{b} \Rightarrow r=\sqrt{a^{r}+b^{r}-r a b \operatorname{Cos} \theta}$
بزرگى اندازهى برآيند دو بردار هماندازه
بزرگی برآيند دو بردار
$\vec{R}=\vec{x}+\vec{y} \Rightarrow R=\sqrt{x^{r}+y^{r}+r x y \operatorname{Cos} \theta}=\sqrt{a^{r}+a^{r}+r a a \operatorname{Cos} \theta}$
$\Rightarrow R=\sqrt{r a^{r}+r a^{r} \operatorname{Cos} \theta}=a \sqrt{r(1+\operatorname{Cos} \theta)}=a \sqrt{r\left(r \operatorname{Cos}^{r} \frac{\theta}{r}\right)}$
$\Rightarrow R=r a \operatorname{Cos} \frac{\theta}{r}$
بزرگى اندازهى تفريق دو بردار هماندازه
بزرگی تفريق دو بردار

$$
\begin{aligned}
& \vec{r}=\vec{x}-\vec{y} \Rightarrow r=\sqrt{x^{r}+y^{r}-r x y \operatorname{Cos} \theta}=\sqrt{a^{r}+a^{r}-r a a \operatorname{Cos} \theta} \\
& \Rightarrow r=\sqrt{r a^{r}-r a^{r} \operatorname{Cos} \theta}=a \sqrt{r(1-\operatorname{Cos} \theta)}=a \sqrt{r\left(r \operatorname{Sin}^{r} \frac{\theta}{r}\right)} \\
& \Rightarrow r=r a \operatorname{Sin} \frac{\theta}{r}
\end{aligned}
$$

 $R=r a \operatorname{Cos} \frac{\theta}{r}, \theta=q \cdot{ }^{\circ} \Rightarrow R=r a \times \frac{\sqrt{r}}{r} \Rightarrow R=\sqrt{r a}$

Y Y $R=r a \operatorname{Cos} \frac{\theta}{r}, \theta=4 \cdot{ }^{\circ} \Rightarrow R=r a \times \frac{\sqrt{r}}{r}=\sqrt{r a}$

سץ- نكته: اندازهى تغريق دو بردار هماندازه با a كه زاويهى بين آنها • 9 درجه است برابر $R=r a \operatorname{Sin} \frac{\theta}{r}, \theta=q \cdot{ }^{\circ} \Rightarrow R=r a \times \frac{\sqrt{r}}{r}=\sqrt{r a}$

Y $R=r a \operatorname{Sin} \frac{\theta}{r}, \theta=i r \cdot{ }^{\circ} \Rightarrow R=r a \times \frac{\sqrt{r}}{r}=\sqrt{r} a$

هץ- نكته: اندازهى تفريق دو بردار هماندازه با a كه زاويهى بين آنها •9 درجه اسـت برابر a (همماندازه با بر دارها) اسـت.

$R=r a \operatorname{Sin} \frac{\theta}{r}, \theta=4 .{ }^{\circ} \Rightarrow R=r a \times \frac{1}{r}=a$

خواص جمع و تفريق بردارهاى هماندازه

 عمود و نيمساز زاويههاى لوزى هستند.

> خواص جمع و تفريق بردارهاى عمود بر هم

عمود بودن برآيند بردارها بر يكى از بردارها

اگر بر آيند دو بر دار و

عمود بودن تفريق بردارها بر يكى از بردارها

اگر تغريق دو بردار و

$$
\overrightarrow{\mathrm{r}} \perp \overrightarrow{\mathrm{a}}: \quad \overrightarrow{\mathrm{a}}
$$

到 $=\vec{E}_{T}+\vec{E}_{Y} \longrightarrow \mathrm{E}_{Y} \quad \mathrm{E}_{\mathrm{T}}=\left|\mathrm{E}_{1}\right|+\left|\mathrm{E}_{Y}\right|$

1- بار الكتريكى
 بار الكتر يكى از مهمترين ويزگى هاى ماده است. همانطور كه مادهى بلدون جرم بیىعنى است، مادهى بدون بار هم بـىمعنى است.

 بارهاى هـمنام و ربايش بارهاى غير هـم نام است.

 بلكه از جسمى به جسم ديگر منتقل مى شود.
r- بار الكتريكى در اجسام بار باردار

اسـت و از اين رو خنثى (بدون بار بار) به نظر میر دسند.
جسم باردار جسمى است كه تعداد الكترونها و پروتونونهايش برای برابر نباشد. اگر تعداد الكترونها بيشتر باشد

 فقط از طريق الكترون انجام مى پذيرد.

 $\mathrm{q}=\mathrm{ne}$ n كرفت.

همانطور كه كفته شد بار الكتريكى از زياد شدن يا كم شدن الكترونهاى ماد ماده به و جود مى آيد. از ظاهر سخن چنين
 ع q = ne بار الكترون باشد. يعنى به عنوان مثال C C

ه- جسم رسانا و نار سانا

 بتواند در جسم شارش پيدا كند. به اجسامى كه داراى الكترون آزاد هستند و الكـر الكتريسيته از آنها شارش مى يابد رسانا مى گويند .
اجسام رسانا را به علت شار ش بار نمىتوان به رو ش مالش باردار نمود.
9- القاى بار الكتريكى هم

 در اين فرآيند رسانا يا نار سانا بودن القا كنندهى بار مهم نيست، ولى جسم القا شونده بايد رسانا باشد.

رساناى القاشونده
در روش القا جسم رسانا بدون تماس با جسم باردار، داراى بار الكتريكى مىشود.

$$
\begin{aligned}
& \text {-V باردار كردن دو كره با بار مخخالف به روش القا }
\end{aligned}
$$

Y - Y ج
r - + - جسم باردار را از كره دور می كنيم.

^- آذرخش يا تخ آخليهى الكتر يكى ابرها در اثر مالش با ها هوا داراى بار الكتريكى مى شاشوند.

 روى ساختمانهای مرتفع نصب میى مین تخليه شده به زمين منتقل شده و به ساختمان و ساكنين آن صدمه نمىزند.

9- تمر كز بار در رسانا
بار در نقاط نوى تيز بهتر جمع مى شودد، در نتيجه تخليه از طريق اين نقاط بهتر انجام مى گیيرد. از اين خاصيت

- ا- اختتلاف پپانسيل الكتر يكى

پتانسيل كرهى كوچچکتر بيشتر از ديگرى است.

 بستگى دارد.

1ا- ولتاز اسمى دستگاه

 دارد و به آن ولتاث اسمى دستگاه مى گويند.
بار الكتريكى

واحد بار الكتر يكى (اكولن") نام دارد كه با نماد »C" نشان داده میشود. اندازهى بار الكتريكى الكترون يا پروتون كه با

$$
\text { e=1/9×1. }{ }^{-19} \mathrm{C} \quad \text { نماد (e) نشان داده میدهيم برابر است با: }
$$

در حالت عادى تعداد پروتونهاى موجود در هستهى هر اتم با تعداد الكترونهاى آن اتم برابر است، لذا در حالت عادى اتم از نظر الكتريكى خنثى است.

از دست دادن الكترون
 ne
(q = + ne
گرفتن الكترون
 بار الكتر يكى منغى پيدا مى كند .

باردار شدن اجسام بر اثر مالش

جس.م رسانا
در موادى كه تعداد الكترونههاى آزاد آن بسيار زياد است بار الكتريكى به آسانى شارش پيدا مى كند، كه آنها را رساناى الكتريكى مىنامند .
 الكتريکى هستند.

نارسانا
-11

 الكتريدكى يا عايق ناميده مى شوند .
 شار ش پیدا نمیى كند (جريان نمى يابد) و اين مواد نارسانا هستند.

پایستگی بار الكتريکى
 بار الكتريكى مىناميم

باردار كردن الكترو سكوپ

نزديک كردن جسم باردار با بار هـمنام به الكتروسكوپ

نزديك كردن جسم باردار با بار ناهمنام به الكترو سكوپ

قانون كولن
اگر دو بار نتطهاى ,

$$
\text { (ثنّت كولن) k= } \frac{1}{4 \pi \varepsilon .}=9 \times 1 \cdot{ }^{9} \mathrm{Nm}^{r} / \mathrm{C}^{r}
$$

(ضريب گذردهى الكتريكى خلا)

اتصال دو كرهى رساناى مشابه به يكديگر

 محاسبه میشود.

نيروى وارد بر بار الكتريكى از طر ف ميدان الكتريكى

 $\mathrm{F}=\mathrm{Eq}$

ميدان الكتريكى اطراف بار نقطهاى

 رابطهى زير مـحاسبه مى گردد:

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

ميدان الكتريكى صفر روى خط واصل دو بار نقطهاى
فر ض كنيد دو بار الكتريكى
 شد. اين نقطه هميشه در نزديكى بارى اسـت كه قدرمطلق آن كو چکكتر است.

تجس.م ميدان الكتر يكى اطراف بارها

 ا- جهت خطوط هم جهرت با نيروى وارد بر بر بار مثبت است.

 Y-

ميدان الكتريكى اطرافد دو بار ناهمنام با بزركى يكسان

$\mathbf{q}_{1}=\left|\mathbf{q}_{\mathrm{Y}}\right|$

ميدان الكتريكى اطراف دو بار هرمنام با بزركى يكسان

$\mathbf{q}_{\mathbf{I}}=\mathrm{q}_{\mathrm{Y}}$

$\mathbf{q}_{1}<\left|\mathbf{q}_{\mathbf{r}}\right|$

ميدان الكتريكى يكتواخت بين دو صنحـى خازن

$\mathbf{q}_{1}>\left|\mathbf{q}_{\boldsymbol{r}}\right|$

هץ- ا- بار الكتريكى فقط روى سطح خارجى جسم رسانا توزيع میشوه، به طورى كه تراكم آن در نقاط تيز جسم رسانا بيش تر مى مباشد.

r- بار الكتريكى موجود در واحد سطح خارجى جسم رسانا را چگگالى سطحى بار مىناميم و طبق رابطهى زير قابل مححاسبه است.

چچگالى سطحى بار الكتريكى در كرهى رسانا

$$
\sigma=\frac{\mathrm{q}}{4 \pi \mathrm{R}^{r}} \Rightarrow \sigma \propto \frac{\mathrm{q}}{\mathrm{R}^{r}} \quad: \quad: \quad \text { مساحت كره می توان نوش. }
$$

پتانسيل الكتريكى جسم رساناى باردار

كليهى نقاط يُى جسم رساناى باردار (چه روى سطح رسانا و چهه داخل رسانا) پپانسيل الكتريكى يكسانى دارند.

تعريف پتانسيل الكتريكى
-rr
 بار الكتر يكى در آن نقطه مى باشد .

تغيير انرزی پتانسيل و كار ميدان الكتريكى

الكتريكى است.

 ذخيره شوه، يعنى • ΔU است است.

$$
\begin{aligned}
& \text { W = FdCos } \alpha
\end{aligned}
$$

تغيير پتانسيل الكتريکى در ميدان الكتريکى
 ميدان الكتريکى بـاشد، پتانسيل الكتريیى افز ایش مى يابلـ .

تغيير انرزی پتانسيل الكتريـیى در ميدان الكتريـیى

 (ذخيره مى شو د).

تعريف ظرفيت خازن
نسبت بار ذخيره شده در خازن بهه اختلاف پتانسيل دو سر خازن (ولتاز) مقدارى ثابدت است كه به آن ظرفيت خـ خازن می گوينل و واحد آن در SI برابر كولن بر ولت است كـ كه فاراد ناميده مىشود.
كولن

ظرفيت خازن مسطح
ظرفيت خازن به تغييرات بار الكتريكى اختلاف پتانسيل دو سر آن بستگى ندارد و ظرفيت خازن مسسطح از رابطهى
 (عايق) بين دو صفحه مى باشد. براى مقايسهى ظرفيت الكتريکى دو خازن مى توان نوشت:

$$
\mathrm{C}=\mathrm{K} \varepsilon \cdot \frac{\mathrm{~A}}{\mathrm{~d}} \Rightarrow \frac{\mathrm{C}^{\prime}}{\mathrm{C}}=\frac{\mathrm{k}^{\prime}}{\mathrm{k}} \times \frac{\mathrm{A}^{\prime}}{\mathrm{A}} \times \frac{\mathrm{d}}{\mathrm{~d}^{\prime}}
$$

قرار دادن صفحهى رسانا بين صفحههاى خازن
 ماننل ايـن است كه از ضـخامت عايق بين دو صغتحه كاسته شده است و در نتيته ظرفيت الكتريكى خازن افزايش

$$
\left\{\begin{array}{l}
d_{1}=d \\
d_{Y}=d-d^{\prime}
\end{array} \Rightarrow \frac{C_{Y}}{C_{Y}}=\frac{d_{Y}}{d_{Y}}=\frac{d}{d-d^{\prime}}\right.
$$

خازن متصل به مولد مى يابد:
 سر مولل مى باشد و ثابـت است و در ايـن حالت با تغيير مشـخصات ساختمانى خازن، ولتاز آن ثابدت مى ماند.

اگر يکى خازن پرشده از مولد جلا شو د، يا تغيير مشـخصات ساختمانى آن بار الكتريكى خازن تغيير نمـى كند.

ميدان الكتر يكى يكنواخت خازن

 سوى آن از صفخحهى مثبت به طرف صفـحهى منغى است .

محاسبهى ميدان يكنواخت خازن
 الكتريكى از رابطهى زير مـحاسبه مى شو شود.

نيروى وارد بر بار الكتريكى در بين صفحهى خازن
از طرف ميدان الكتريكى خازن به بار الكتريكى مثبت نيرويى در جهت ميدان (از صفحـه دار داراى بار مثبت به طرف صفحه داراى بار منفى) و به بار منغى نيرويى در خلاف جهـت ميدان وان وارد مى شود.促 $\leftarrow \mathrm{F}=\mathrm{qE} \Rightarrow \mathrm{F}=\mathrm{q} \frac{\mathrm{V}}{\mathrm{d}}$

رابطهى ميدان الكتريكى يکنواخت و اختلا ف پتانسيل الكتريکى
در يـى ميدان الكتريكى يكنواختى، اختلاف پتانسيل الكتريكى بين دو نقطه با فاصلهى آن در امتداد ميدان الكتريكى متناسب است.

$$
\mathrm{E}=\frac{\mathrm{V}}{\mathrm{~d}} \Rightarrow \mathrm{~V}=\mathrm{Ed}
$$

$\left(\mathrm{d}_{\mathrm{AB}}=\frac{1}{\mathrm{r}} \mathrm{d}\right.$: مثلا اكر داشته باشيم) $) \Rightarrow \mathrm{V}_{\mathrm{AB}}=\mathrm{Ed}_{\mathrm{AB}}=\mathrm{E}\left(\frac{1}{\mathrm{r}} \mathrm{d}\right) \Rightarrow \mathrm{V}_{\mathrm{AB}}=\frac{1}{\mathrm{r}} \mathrm{V}$
انرثى ذخيره شده در خازن
 صفخحهى يک خازن طبق رابطههاى زير قابل مـحاسبه است:

ميكروكولن ميكروزول

تغيير مشخصات يی خازن پر شده

هر كاه مشخخات ساختمانى يُى خازن پر شده را تغيير میدهيم، طبق رابطهى

$$
\text { رابطههاى U } \mathrm{U}=\frac{1}{\mathrm{r}} \frac{\mathrm{q}^{\mathrm{r}}}{\mathrm{C}}, \mathrm{E}=\frac{\mathrm{V}}{\mathrm{~d}}, \mathrm{~V}=\frac{\mathrm{q}}{\mathrm{C}} \text { كنيد. }
$$

تغيير در ظرفيت معادل مدارهاى خازنى

 اين خازن در مدار ، ظر فيت معادل افزايش مى يابد.

اثر كليد در مدارهاى خازنى (1)
گاهی بسته شدن يـى كليد، خازنى را از مدار خارج مى كند. در اين حالـت بايد با با بسته شدن كليد، دو سر خازن مور مورد نظر با يـك سيم به هم وصل گردد.

اثر كليد در مدارهاى خازنى (艹)

 نظر به دو سر خازنى كه در مدار اسـت وصل وصل مى گردد.

$\xrightarrow{\text { كليد بسته }}$

اثر كليد در مدارهاى خازنى ()
$-\Delta r$

rهـ تعريف كمى ميدان
نيروى وارد بر يكاى بار الكتريكى مثبت را در هر نقطه، ميدان الكتريكى در آن نقطه مىناميم. مقدار آن طبق رابطهى $\vec{E}=\frac{1}{q} \vec{F}$

روبهرو محاسبه مىشو :

اختالاف پتانسيل الكتريكى دو نتطه، برابر با تغيير انرزی پتانسيل الكتريكى يكاى بار الكتريكى مثبت است، وقتى يكاى $\Delta \mathrm{V}=\frac{\Delta \mathrm{U}}{\mathrm{q}}$ بار از نقطهى اول تا نقطهى دوم جابهجا میشود. در اين رابطه DU بر حسبب زول (J)؛ C (J برحسب كولن (C) و V (C بر حسبب ولت (V) است. ه
اگر بار الكتر يكى خازن از مقدار معينى بيشتر شود، يكى ميدان الكتريكى بسيار قوى بين دو صفحه ايـجاد مىشود. اين

 الكتريكى و سوختن خازن مـنـ شود.

 ايـجاد جريان دائمى از مولد استفاده مى كنيم. مولد با دادن انرڭى به بار آن را از محلى با پتانسيل كمتر به موقعيتى با پتانسيل بيشتر مییرد. Y- نيروى مـحر كهى مولد
 مى كنند (بـه بار انرزی مى دهند). مقدار اختلاف پتاسيل دو سر مولد بر حسـب توان خرو جـى آن (مصر ف كننده) مىتوانل متغير باشد. بيش ترين اختلا ف پتانسيلى كه مولد مىتواند ايـجاد كند نيروى محركه مولد نام دارد و با يـای ولت اندازهگير ى مى شود .

س- جر يان الكتريكى

 $I=\frac{q}{t}$

〒 ب- مقاومت الكتريكى

 وقتى رسانا گرم مى شود نو سانهاى ذرات آن افزايش مى يابد. اين مسئله سبب افزايش مقاومت الكتريكى آن مى شود .
 (شدت جريان الكتريكى) همواره براى يكى رسانا مقدار ثابتى است كه به آن مقاومت الكتريكى كَتته مىشود.

مقاومت الكتريكى با R نشان ان داده مى شود:

$$
\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}
$$

اگر به ازاى اختلاف پتانسيلهاى مختلف شدت جريان را اندازه بگيريم و نمودار I I - V بر حسبب V) را رسم كنمّ
 شيب خط حاصل با

و شيب خط كمتر، نشانهى مقاومت بيشتر است.

9- مصر ف انرزى الكتريكى
وقتى از يُى رسانا در اثر اختلاف پتانسيل V جريان I عبور مى كند، مقدارى انرظى الكتريكى مصرف شده عموماً تبديل
به انرثى درونى مى شود.

(R) - مقاومت الكتريكى رسانـانـا
(t) (R) ز ز
(I「
انرزی مصرفى را با W نشان میدهيم. رابطهى بين W W و سه عامل ياد شده به شكل زير است:

$$
\mathrm{W}=\mathrm{RI}^{r} \mathrm{t}
$$

 مى آيد. انرثى مصرفى در يـى رسانا با رابطههاى ديگر نيز به دسـت مى آيد:

$$
\begin{aligned}
& \mathrm{W}=\mathrm{RI}^{r} \mathrm{t}=\text { RI. } \mathrm{I} . \mathrm{t}=\mathrm{VIt} \\
& \mathrm{~W}=\mathrm{RI}^{r} \mathrm{t}=\frac{\mathrm{R}^{r} I^{r}}{\mathrm{R}} \mathrm{t}=\frac{(\mathrm{RI})^{r}}{\mathrm{R}} \mathrm{t}=\frac{\mathrm{V}^{r}}{\mathrm{R}} \mathrm{t} \\
& \mathrm{~W}=R I^{r} \mathrm{t}=\mathrm{RI} . \mathrm{It}=\mathrm{V} . \mathrm{q}
\end{aligned}
$$

V- توان الكتر يكى مصرفى در رسانا

به آهنگَ مصر ف انرزی الكتريكى در ر رسانا توان الكتريكى گَفته مى شود. توان عبارت است از انرثى مصر ف شده در واحد زمان (مثلاً ا ثانيه)

$$
\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}
$$

ما براى انرظى چهار رابطه داشتيم. بنابراين براى توان نيز چهار رابطه وجود دارد:

$$
\mathrm{P}=\mathrm{RI}^{\zeta}
$$

$$
\mathrm{P}=\frac{\mathrm{V}^{\zeta}}{\mathrm{R}}
$$

$$
\mathrm{P}=\mathrm{VI}
$$

$$
\mathrm{P}=\frac{\mathrm{Vq}}{\mathrm{t}}
$$

اگر يكاى ديگر كميتها استاندارد انتخاب شده باشد، يكاى توان زول بر ثانيه (W)
 ^- ساختمان لامی رشتهاى

$$
\begin{aligned}
& \text { + بالا مى برد. } \\
& \text { از انرزى خود را به صور ت انرزیى نورانى تابش میى كند. }
\end{aligned}
$$

 ولتازً اسمى مى گويند
 توان اسمى دستگاه، توان مصرفى آن در صور ت اتصال به ولتاز اسمى است. توان بيشتر يا كمتر براى دستگاه ممكن اسـت زيان درانبار باشد.
 مصرف را با t ز نشان دهيم انرزى مصرفى طبى طبق رابطهى زير به دست مى آيد: $\mathrm{W}=\mathrm{Pt}$

 كيلوواتساءت (kWh) به دست می آيد

 انرزی مصر فی بر حسبب كيلوواتساعت × \times هزينهى هر كيلوواتساعت = هزينهى مصرفى كل

تعريف ظرفيت خازن

 مى گويند و واحد آن در SI برابر كولن بر ولت است كه فاراد ناميده مىشود. كولن \rightarrow كولت \rightarrow فوراد \rightarrow ف

ظرفيت خازن مسطح

ظرفيت خازن به تغييرات بار الكتريكى اختلاف پتانسيل دو سر آن بستگى ندارد و ظرفيت خازن مسططح از رابطهى
 (عايق) بين دو صفحه مى مباشد.
براى مقايسهى ظرفيت الكتريكى دو خازن مى توان نوشت:
$\mathrm{C}=\mathrm{K} \varepsilon \cdot \frac{\mathrm{A}}{\mathrm{d}} \Rightarrow \frac{\mathrm{C}^{\prime}}{\mathrm{C}}=\frac{\mathrm{k}^{\prime}}{\mathrm{k}} \times \frac{\mathrm{A}^{\prime}}{\mathrm{A}} \times \frac{\mathrm{d}}{\mathrm{d}^{\prime}}$
قرار دادن صفحهى رسانا بين صفحههاى خازی
وقتى بين دو صغخهى خازنى كه فاصله آنها با برابر d است مانند اين است كه از ضخامت عايق بين دو صفحه كاسته شده اسـت و در نتيجه ظرفيت الكتريكى خازن افزايش

$$
\left\{\begin{array}{l}
d_{1}=d \\
d_{Y}=d-d^{\prime}
\end{array} \Rightarrow \frac{C_{Y}}{C_{1}}=\frac{d_{1}}{d_{Y}}=\frac{d}{d-d^{\prime}}\right.
$$

خازن متصل به مولد

 سر مولد مىباشد و ثابت است و در اين حالت با تغيير مشخخصات ساختمانى خازن، ولتاز آن ثابت مى ماند.

خازن پرشدهى جدا از مولد

اگر يکى خازن پرشده از مولد جدا شود، يا تغيير مشخصات ساختمانى آن بار الكتريكى خازن تغيير نمى كند.

ميدان الكتريريكى يكنواخت خازن

هر گاه دو صغححهى مسطط، موازى هم قرار داشته باشند و دو صفـحه داراى بارهاى
 سوى آن از صغحهىى مثبت به طر ف صفـحهى منغى است .

محاسبهى ميدان يكنواخت خازن
براى خازن مسطحى كه فاصلهى دو صفـحهى آن برابر d و اختلاف پ پ $ل$ الكتريیى از رابطهى زی ایر مـحاسبه مى شود .
(ولت) انتالف پپ

نيروى وارد بر بار الكتريكى در بين صفحهى خازن
 صغتحه داراى بار منغى) و به بار منغى نير ويیى در خخلاف جهfت ميدان وارد مى شود.

 متناسب است.

$$
\mathrm{E}=\frac{\mathrm{V}}{\mathrm{~d}} \Rightarrow \mathrm{~V}=\mathrm{Ed}
$$

$\left(\mathrm{d}_{\mathrm{AB}}=\frac{1}{\mathrm{r}} \mathrm{d}\right.$: مثلا اكر داشته باشيم) $) \Rightarrow \mathrm{V}_{\mathrm{AB}}=\mathrm{Ed}_{\mathrm{AB}}=\mathrm{E}\left(\frac{1}{\mathrm{r}} \mathrm{d}\right) \Rightarrow \mathrm{V}_{\mathrm{AB}}=\frac{1}{r} \mathrm{~V}$

انرثى ذخيره شده در خازن
 صفـحهى يـى خازن طبق رابطههاى زير قابل مـحاسبه است:

ميكروكولن ميكروزول

تغيير مشخصات يیى خازن پپ شده

تغيير در ظرفيت معادل مدارهاى خازينى
-

 اين خازن در مدار ، ظرفيت معادل افزايش مى يابد .

اثر كليد در مدارهاى خازنى (1)
\qquad

اثر كليد در مدارهاى خازنى (r)

 نظر به دو سر خازنى كه در مدار اسـت وصل وصل مى گردد.

اثر كليد در مدارهاى خازنى ()

نيروى محركهى مولد

انرزى الكتريكى منتقل شده به بار از طرف مولد(كار انجام شده توسط مولد) انريكد

جهت نيروى محركهى الكتريكى

 است كه مولد مى خواهد جريان الكتريكى را در در مدار برقرار كند. .

مدار تك حلقه

در يکى مدار تكى حلقه با يکى مولد همواره جريان الكتريكى در جهـت نيروى محر كهى مولد در مدار برقرار مىشود.

钴 $=\mathrm{rI} \rightarrow \mathrm{V}^{\prime}=\mathrm{r}\left(\frac{\varepsilon}{\mathrm{R}_{\mathrm{T}}{ }^{+} \mathrm{r}}\right)$

-
V

بيشينهى جريان توليدى تو سط مولد

پتانسيل دو سر مولد برابر صغر مى شود و شدت جريان بيشينهاى كه از آن عبور مى كند برابر خواهد بود با: $\mathrm{R}_{\mathrm{T}}=\cdot \Rightarrow \mathrm{V}_{\mathrm{J}}=\cdot \Rightarrow \mathrm{I}_{\max }=\frac{\varepsilon}{\mathrm{r}}$

بيشينهى اختلاف پتانسيل دو سر مولد

-ry
 ولتسنج ايدهآل وصل شود و يا مقاومت درونى مولد ناپيز باشد اختلاف پتانسيل دو سر مولد بيشينه و برابر نيروى محر كه مولد خواهد بود.

$\Rightarrow\left\{\begin{array}{l}\mathrm{R}=\infty \Rightarrow \mathrm{I}=\cdot \Rightarrow \mathrm{rI}=\cdot \Rightarrow \mathrm{V}=\varepsilon \\ \mathrm{r}=\cdot \Rightarrow \mathrm{rI}=\cdot \Rightarrow \mathrm{V}=\varepsilon\end{array}\right.$
سر- نكته : وقتى مقاومت الكتريكى مدار تغيير مى كند و نحوهى تغيير اختلاف پتانسیل دو سر مولد را بخخواهيم، مناسبتر است كه از رابطهى V =

$$
\mathrm{R} \uparrow \Rightarrow\left\{\begin{array}{l}
\mathrm{I}=\frac{\varepsilon}{\mathrm{R}+\mathrm{r}} \quad, \mathrm{R} \uparrow \Rightarrow \mathrm{I} \downarrow \\
\mathrm{~V}=\varepsilon-\mathrm{rI}, \mathrm{I} \downarrow \Rightarrow \mathrm{rI} \downarrow \Rightarrow \mathrm{~V} \uparrow
\end{array}\right.
$$

 ايدجاد كرده است) اختلاف پتانسيل دو سر اين مولد برابر rI - ع استـ.

هץ- نكته : اگر از يیى مولد جريان الكتريكى در خلاف جهـت نيروى محر كهى مولد عبور كند (يعنى جريان الكتريكى

$$
\mathrm{B} \quad \stackrel{\varepsilon}{\longrightarrow} \mathrm{I} \quad \mathrm{~A} \quad \Rightarrow \mathrm{~V}_{\mathrm{AB}}=\varepsilon+\mathrm{rI}
$$

مدار تك حلقه با چند مولد مشابه
 فر ض كرد كه نيروى مـحر كه كل اين مدار برابر nع و مقامت درونى آنها برابر nr میباشد .

$$
\begin{aligned}
& \varepsilon_{\mathrm{T}}=\mathrm{n} \varepsilon \\
& \mathrm{r}_{\mathrm{T}}=\mathrm{nr}
\end{aligned} \Rightarrow \mathrm{I}=\frac{\varepsilon_{\mathrm{T}}}{\mathrm{R}+\mathrm{r}_{\mathrm{T}}} \Rightarrow \mathrm{I}=\frac{\mathrm{n} \varepsilon}{\mathrm{R}+\mathrm{nr}}
$$

مدار تك حلقه با چنـد مولد متفاو ت

 بكار ببرند .

اگر در ابطهى بالا I مثبت مـحاسبه شود يعنى جهت جريان الكتر یییى انتخاب شده درست است و اگر منغى مححاسبه

تغيير پتانسيل در عبور از يک مقاومت

توان يـك مولد
انرزی الکتريیى توليد شده توسط يـى مولد (انز
 توان توليدى U

بيشينهى توان مفيد يـ يك مولد

$I=\frac{\varepsilon}{R+r} \xrightarrow{I=\frac{\varepsilon}{\gamma_{r}}} R=r$ مقاومت خارجى مدار وقتى توان مفيد بيشينه است
$\mathrm{I}=\frac{\varepsilon}{\text { rr }} \xrightarrow{\text { V ولتارٌ دو سر مولد } \mathrm{V}=\varepsilon-\mathrm{Ir}} \mathrm{V}=\frac{\varepsilon}{\mathrm{L}}$.
به هـم بستن مقاومتها
مقاومت معادل موازى

$$
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{r}}+\frac{1}{\mathrm{R}_{r}}
$$

حالت خاص: دو مقاومت , R , R R موازى شوند.
$R_{T}=\frac{R_{1} R_{Y}}{R_{1}+R_{Y}}$
حالت خاص : n مقاومت مشابه موازى شوند.

$$
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{R}}{\mathrm{n}}
$$

حالت خاص: n مقاومت مشابه متوالى شوند.
$\mathrm{R}_{\mathrm{T}}=\mathrm{nR}$

جريان و اختلاف پֶتانسيل در مقاومتهاى موازى و متوالى

موازی

$$
\begin{aligned}
& I=I_{1}+I_{Y} \\
& V_{1}=V_{Y} \Rightarrow R_{1} I_{1}=R_{Y} I_{Y} \\
& V_{1}=V_{T} \Rightarrow R_{1} I_{1}=R_{T} I
\end{aligned}
$$

در شكل بالا، اگر اندازه مقاومت ها)

ا- شدت جريان در مقاومت هاى متو مالو الى با يكديگر برابر است.

$$
\begin{aligned}
& V=V_{1}+V_{r} \\
& V_{1}=R_{1} I \\
& V_{r}=R_{r} I
\end{aligned}
$$

در شكل بالا، اگر

افزايش حدود اندازهگيرى ولت سنج

بالاترى را اندازهگيرى كند بايد يـى مقاوهت بز بزر گ را با آن بهطور متو الى ببنديم.

$$
\begin{aligned}
& V=R, I \Rightarrow I=\frac{V}{R} \\
& V=\left(R_{\bullet}+R\right) I
\end{aligned}
$$

افزايش حدود اندازهگيرى آمپر سنج

 شدت جريان بالاترى را اندازهگيرى كند بايد يکى مقاومت كو جیى را بهطور موازى ببنديم.

كاربرد سيم اتصال كوتاه در مدارهاى الكتريكى

 الكتريكى آن دو نقطه با يکديگُر برابر شود. لذا با قرار دادن دو نتطه بر يکى ديگر مى توان شكل سادهترى از مدار را بهدست آورد.

انرڭى الكتريكى مصرفى در مجوعهى مقاومتها
مناسبترين رابطه براى مقايسهى توان الكتريكى مصرفى (توان گرمايى) در مقاومتها رابطهى P = RI اكر دو مقاومت الكتريكى موازى باشند، رابطهى P= خواهد بود.
$\longrightarrow-W V H \quad R_{Y}=r R_{1} \quad \Rightarrow\left\{\begin{array}{l}P_{1}=R_{1} I^{r} \\ P_{Y}=R_{Y} I^{r}\end{array} \Rightarrow \frac{P_{Y}}{P_{1}}=\frac{R_{Y}}{R_{1}}=r\right.$

$V_{Y}=V_{\mu} \Rightarrow I_{\Gamma} R_{Y}=I_{\Gamma} R_{\mu} \Rightarrow I_{\Gamma} \times q=I_{\mu} \times 1 \wedge \Rightarrow I_{Y}=\uparrow I_{\Gamma}$

حداكثر توان مصرفى مقاومتها

 شده در مسئله) و سپس با محاسبهى مقاومت معادل بقيهى مقاومتتهاى باقيمانده، توان الكتر يكى آنها را را نيز معلوم

توان مصرفى در شاخه ى ديگر $\Rightarrow P^{\prime}=R^{\prime} I^{\prime}{ }^{r}=r R\left(\frac{1}{r} I\right)^{r}=\frac{1}{r} R I^{r}$
توان مصرفى در كل مدار $\mathrm{P}_{\mathrm{T}}=\mathrm{P}+\mathrm{P}^{\prime}$

مصر فكنندههاى الاكتريكى (لامپپها)

 قابل مححاسبه است.

$$
\mathrm{P}=\frac{\mathrm{V}^{r}}{\mathrm{R}} \Rightarrow \mathrm{P}_{\mathrm{S}}=\frac{\mathrm{V}_{\mathrm{S}}^{r}}{\mathrm{R}} \Rightarrow \mathrm{R}=\frac{\mathrm{V}_{\mathrm{S}}^{r}}{\mathrm{P}_{\mathrm{S}}}
$$

 نوشته شده است مقاومت الكتر يكى كوچککترى دارد.

$$
\begin{aligned}
\mathrm{P} & =\frac{\mathrm{V}^{r}}{\mathrm{R}} \\
\mathrm{P}_{\mathrm{S}} & =\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}}
\end{aligned} \quad \Rightarrow \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{S}}}=\left(\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{S}}}\right)^{r}
$$

توان مصرفى كل لامپֶهاى موازى متصل به برق شمر

سر هر لامپپ برابر V بوده و هر لامپ توان اسمى P , ام مصر ف می كند. در نتيجه:

توان مصرفى كل لامپ هاى موازى متصل به برق شهر
توان مصرفى كل لامپهای متوالى به برق شمر
 توان الكتريكى كل لامپها قابل مححاسبه است.

اتصال مقاومت و خازن در مدار
الف) خازن در شاخهى اصلى باشد
 اختلاف پتانسيل دو سر خازن با نير وى محر كهى مولد برابر مى شود.

 در مدار بى تأثير است. در نتيجه ولتاز خازن با ولتازً دو سر مولد برابر استـ.

اتصال مقاومت و خازن در مدار
ب) خازن با يكى از اجزاى مدار موازى است

 ولتازً دو سر خازن با ولتازً دو سر مقاوهت

q = CV خازن خازن =

اتصال مقاومت و خازن در مدار پ خازن در شاخهى اصلى نباشد و با هيیج جزيى نيز موازى نباشد
 تغيير اختلاف پتانسيلـهاى حلقه را مینويسيم. در شكل زیر در شاخخهاى كه خخازن است، شدت جريان برابر صغر مى باشلد.

$$
\begin{aligned}
& I=\frac{\varepsilon_{1}}{\left(R_{1}+R_{Y}\right)+r_{1}} \\
& \text { (حلقه } \text { (حالا })-I R_{1}-I R_{Y}-V_{C}+E_{Y}=\cdot \Rightarrow V_{C}=?
\end{aligned}
$$

قانونهاى كيرشهف
قانون شد ت جريان ها: مـجموع جريانهاى كه به هر گره (يـعنى نقطهاى كه اجزاى مدار در آن نقطه به هم متصل شدهاند) مىرسنل برابر مجموع جريانهايى است كه از آن نقطه خارج مى شوند. . خروجیى I = I ورودى

قانون اخختلا ف پتانسيل ها: در هر حلقه يا هر مدار بسته، مجموع جبرى اختللف پتانسيل هـا صغر است. $\sum \mathrm{V}$ حلقه = .

تحليل مدار
اگر n شاخخه در مدار و جود داشته باشد، براى حل مدار به n معادله نياز داريمم.
 مى نو يسيم.
ب) قانون اختلاف پتانسيل را براى هر حلقه (مسير بسته) مینويسيم و با داشتن n معادله، جريانهاى هر شاخه، را بهدست میا آوريم. اگر جريان الكتريكى عددى منغى به دست آيلد جهت آن برعكس جهـت انتخاب شده است.

09- فر و شكسدت
اگر بار الكتر يكى خازن از مقدار معينى بيشت تر شود، يـى ميدان الكتريكى بسيار قوى بين دو صفحهه ايـجاد مىشود. ايـن

 الكتريکى و سو ختن خازن مى شود .
-9- عوامل موثر در مقاومت رساناى فـاى فلزى
مقاومت يکى رساناى فلزى در دماى ثابت بهطول، سطح مقطع و جنس آن بستگى دارد د.
$\mathrm{R}=\mathrm{P} \frac{1}{\mathrm{~A}}$
رابطهى زير بستگى مقاومت را به سه عامل مذ كور بيان مى كند.
در اين رابطه م مقاومت ويزه بر حسبب اهممتر (Sm)، 1 طول رسانا بر حسبب متر (m) و A مساحت سطح مقطع سيم بر حسبب متر مربع (mº میباشد.
|-4ا اثر دما بر مقاومت رساناهاى فلزى
در رساناهاى فلزى افزايش دما سبب افزايش مقاومت وير ويزه و در نتيـجه افزايش مقاومت رسانا مىشود. اگر افزايش دما $\rho_{Y}=\rho_{1}(1+\alpha \Delta \theta) \quad$ زياد نباشد مقاومت ويزهى جسم با رابطهى زير به دست مى آيد.
 $R_{Y}=R_{1}(1+\alpha \Delta \theta) \quad$ نيز با رابطهى زير محاسبه می شود. R_{Y} (با

4ヶ- شدت جريان متوسط
بار شارش شده شده در واحد زمان را شدت جريان متوسط گويند.
$\overline{\mathrm{I}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{t}}$
شدت جريان متوسط از رابطهى زير محاسبه مى شود.

rو- جر يان مستقيم

اگر در تمام بازههاى زمانى جريان لحظهاى و شدت جريان متوسط برابر است. در اين صورت رابطهى شدت جريان بان شان شكل زير تبديل مىشود. $I=\frac{q}{t}$

44- مقاومت متغير

 حر كت آن مىتوان هر قسمـت از مدار را كه نياز است در مدار قرار داد.

بعضى مواقع براى توليد مقاومت متغير از جعبه مقاومت استفاده مى شود.

90- كد رنغى مقاومتهـا
 نمايندهى يكى عدد است .

دو نوار اول و دوم از سمت چپ
 جدول زير عددهاى مربوط به هر رنگا را مشخخص مى كند.

عدد	,
-	سياه
1	قهوه ای
r	قرمز
r	نارنجى
4	زرد
0	سبز
9	آبى
v	بنغش
9	سفيد

تذكر: رنگگهاى خاكسترى و سفيد در نوار سوم ظاهر نمىشوند.

ميدان مغناطيسى اطراف آهنربا

خاصيت مغناطيسى اطراف يكى آهنربا را با خط هايى نشان میىدهيم كه از قطب N آهن آربا خارج و به قطب S وارد مى شوند.

ץ- نكته: در اطراف قطب هاى آهن ربا كه خاصيت مغناطيسى شديد است، خط هاى ميدان متراكمتر رسم مى شوند. r- نكته: جهت خط هاى ميدان در داخل آهنربا از سمت قطب S به سمت قطب N مىباشد.

عقربهى مغناطيسى

 هنگام تعادل قطب N آن در سوى ميدان مغناطيسى باشد، در اين حالت خط هاى ميدان مغناطيسى از قطب S آن وارد و از قطب N آن خارج مى شوند.

اندازهى نيروى وارد بر سيم حامل جريان در ميدان مغناطيسى
هر گاه سيمى راست حامل جريان الكتريكى در ميدان مغناط

نيروى وارد بر سيم از طرف ميدان مغناطيسى(نيوتن)
طول سيم(متر)

جهت نيروى وارد بر سيم حامل جريان در ميدان مغناطيسى
 مى شود .

يكاى ميدان مغناطيسى
با استفاده از رابطهى F=ILBSin α ، يكاى ميدان مغناطيسىى را مى توان بهدست آورد كه تسلا ناميده مى شود. F

اندازهى نيروى وارد بر بار الكتريكى متحرى در ميدان مغناطيسى

 ميدان مغناطيسى نيرو وارد مى شود.
(N) (N) نيروى وارد بر بار متحرى
سرعت حركت بار(متر بر ثانيه)
"

$$
\xrightarrow{\text { (B , V } V \text { (زاويه ى بين) }}\left\{\begin{array}{l}
\alpha=\cdot \mathrm{L} \mid \wedge \cdot^{\circ} \Rightarrow \mathrm{F}=\cdot \\
\alpha=9 \cdot{ }^{\circ} \Rightarrow \mathrm{F}_{\text {max }}=\mathrm{qVB}
\end{array}\right.
$$

ميدان مغناطيسى(تسلا) بار الكتريكى (كولن)

جهت نيروى وارد بر بار الكتريكى متحرى در ميدان مغناطيسى

 راست براى بار مثبت تعيين میشو مـرد.

اندازهى ميدان مغناطيسى اطراف سيم راست و بلند
در اطراف سيم حامل جريان ميدان مغناطيسى به وجود مى آيد كه اندازهى آن آن در هر نقطه از طرف فـ سيم با شد
جريان كذرنده از سيم (I) نسبت مستقيم و با فاصلهى نقطه از سيم (d) نسبت عكس دارد. پِس داريم: $B \propto \frac{I}{d}$

$$
\mu .=\psi \pi \times \quad{ }^{-v \frac{T . m}{A}} \text { قابيت گذردهى ميدان مغناطيسى در خاء }
$$

$$
\text { شاصد جريان (امهر (} 1
$$

خطوط ميدان مغناطيسى اطراف سيم راست و بلند

 از مر كز دايرهها گَشته و بر صفحه صفـحه آنها عمود است.) و سوى آن با قانون دست راست تعيين مىشود.

ميدان مغناطيسى حاصل از دو سيم موازى

در اين حالـت ميدانها در خارج دو دو سيم همّسو و بين دو سيم

 مجموع اندازهى ميدان حاصل از هر سيم خواهد بود

جريانها هـم سو باشند

ميدان مغناطيسى حاصل از دو سيم موازى

جريانها ناهم سو باشند
 ناهمسو بوده و اندازهى ميدان برانها آيند بين دو سو سيم برابر
 آنها برابر قدر مطلق تفاضل آنهاستـ.

يافتن نقطهاى در صفحه دو سيم موازى كه برآيند ميدانها در آن نقطه صفر باشد:

ب) در حالت جريانهاى ناهمسو نقطهاى كه ميدان مغناطيسى برا بآيند در آن صر

$$
\frac{I_{1}}{\mathrm{I}_{Y}}=\frac{\mathrm{d}_{1}}{\mathrm{~d}_{Y}} \quad\left(\mathrm{I}_{1}>\mathrm{I}_{Y}, \delta /\right)
$$

$$
: \frac{I_{1}}{I_{Y}}=\frac{d_{1}}{d_{Y}}
$$

مى دانيم بر آيند دو بر دار وقتى صفر است كه دو بردار هماندازه ولى ناهمسو باشند.
$B_{T}=\cdot \Rightarrow B_{1}-B_{r}=\cdot \Rightarrow B_{1}=B_{r} \Rightarrow \frac{\mu \cdot \mathrm{I}_{1}}{r \pi d_{1}}=\frac{\mu \cdot \mathrm{I}_{r}}{r \pi \mathrm{~d}_{r}} \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{r}}=\frac{\mathrm{d}_{1}}{\mathrm{~d}_{r}}$
نيروى بين دو سيم موازى

تعيين سوى ميدان در مركز حلقه
راستاى ميدان در مر كز حلقه عمود بر سطع حلقه است و و براى

 انگشـت دست راست در در سوى جريان باشد. انگشـت شسـت سوى ميدان در مر كز حلقه را نشان مى دهد.

تعيين قطبهاى مغناطيسى حلقههاى حامل جريان

 آهنربايیى است كه خطوط ميدان از درون آن به طرف فـ خارج
 مى شود قطب N است و رخخى كه ميدان B به آن داخل مى شود قطب S S است.

اندازهى ميدان در مركز حلقه

حلقه (r) نسبت عكس دارد و داريم:
($\leftarrow \mathrm{B}=\mathrm{N} \frac{\mu}{\mathrm{r}} \frac{\mathrm{I}}{\mathrm{r}}$

جهت ميدان مغناطيسى در مركز حلقه

ميدان در مر كز حلقه، عمود بر سطح حلقه و در امتداد مـحور آن است و اندازهـى ميدان در ايـن اين نقطه (مر كز حلقه) بيشتر از نتاط ديگر روى محور است.

ميدان سيملوله

ميدان مغناطيسى كه در اثر جريان I در داخل يـى سيملوله بهطول L L L با حلقه ايدجاد مى شود در نقاط نسبتاً دور از لبههاى سيملوله يكنواخت است و مقدار آن در تمام نقاط فضاى داخل سيملوله از رابطهى زير محاسبه مى گردد. م $\leftarrow \mathrm{B}=\mu \cdot \frac{\mathrm{N}}{\mathrm{L}} \mathrm{I}$

تعداد دورهاى پيچچه يا سيملوله

با قرار دادن يیى هستهى آهنى (مادهى فرومغناطيس) در داخل يکى پيجهه يا سيملوله، ميدان مغناطيسى افزايش مى يابد. Yץ- و قتى سيمى به دور يـى يکى يـى تيغه از جنس مواد فرومغناطيس پيحتيده شود و از آن جريان الكتريكى مستقيم عبور دهيم، دو قطبى هاى تيغه در سوى ميدان حاصل از سيمپيج منظم شده و تبديل به آهن ربا می شود.

سوى ميدان در داخل پپچه

 دور محيط حلقه قرار دهيد، انگشت شـست، سوى ميدان را در مر كز حلقه نشان خواهد اند داد. زكته: اگر سوى ميدان حاصل از حلقه به طرف بيرون تيغه باشد، آن سر تيغه قطب N خواهد بو بود (با اتكاء به اينكه خط ميدان از قطب N خارج مىشود) در غير اينصور ت قطب S C خواهد بود.

خاصيت مغناطيسى مواد

 فرومغناطيس، پارا مغناطيس و ديا مغناطيس طبقهبندى مى شوند.

مواد فرو مغناطيس
در اين مواد دو قطبى هاى مغناطيسى در قسمتهایاى مجزايىى به نام

 آهنربايى نداشته باشد. مثل آهن، نيكل، كبالت، مواد فر فرومنغناطيس در در دو نوع فرومغناطيس نرم و فرو مغناطيس سختى مى مباشند.

القاى مغناطيسى

 آهنربا مى شود و همواره سر نزديک ري به قطب آهنزربا ناهم نام با با آن مى شود. بنابراين القا همواره به گونهاى است كه ربايش به سوى آهن رباى اصلى را سبب میشود

فرو مغناطيس نرم

 دست مى دهند . اين مواد در ساخت آهن رباهاى الكتريكى (موقتى) مثلًا در زنگی اخبار ... كاربرد دارند.

فرومغناطيس سخت
موادى مانند فولاد و برخیى از آليازهاى نيكل و كبالت كه به سختى آهن ربا مبا مى شوند و به سختى نيز خاصيتشان را از

مواد پارامغناطيس

اس- ويزگى گهاى خطوط ميدان
 خ- Y
 Y- از هر نقطه از فضا فقط يك خـ خط ميدان مى گذرد . بـه بيان ديگر خطوط ميدان مغناطيسى هم ديگر را قطع نمى كنند.

شار مغناطيسى

 سيمبیّج يا مدار عبور مى كند طبق رابطهى زير قابل محاسبه است: مساحت يك حلته (ميدان مغناطيسى(T)

شار مغناطيسى بيشينه

 (سطح سيم بییج عمود بر ميدان) $\Rightarrow \theta=\cdot^{\circ}$ م $1 \wedge \cdot^{\circ} \Rightarrow|\operatorname{Cos} \theta|=1 \Rightarrow \varphi_{\max }= \pm A B$

شار مغناطيسى صفر

وقتى سيم ييتج موازى ميدان مغناطيسى باشد، شار مغناطيسى عبورى برابر صفر اسـتـ. (سيم پي

قانون فارادى

 $\varepsilon=-\frac{\mathrm{d} \varphi}{\mathrm{dt}}$

$$
\text { در اين رابطه ع بر حسبب ولت، } \frac{\mathrm{d} \varphi}{\mathrm{dt}} \text { بر حسب وبر بر ثانيه است. }
$$

 عامل بهو جود آو رنده خود (تغيير شار) مـخالفت مى كند.

محاسبهى نيروى محر كهى القايى متو سط و لحظهاى

از تر كيب دو قانون فارادى و لنز، فرمولها از رابطهى زير بهدسـت مى آيد: $\varepsilon=-\mathrm{N} \frac{\mathrm{d} \varphi}{\mathrm{dt}}\left({ }^{\text {(}}\right.$ (نيروى محر كه ى خودالقايى متوسط) $) ~ \bar{\varepsilon}=-\mathrm{N} \frac{\Delta \varphi}{\Delta t}$ (S) تعداد حلقه هاى بيحه ، ($\frac{\mathrm{wb}}{\mathrm{s}}$)

V- نكته: در مواردى كه حر كت باءث تغيير شار مى شود، قانون لنز مانند نيروى اصطكاى عمل كرده و در مقابل حر كت مقاومت نشان مى دهد.

رو شهاى ايجاد تغيير شار در يک مدار

 زوايهى بين سوى ميدان مغناطيسى و نيمخط عمود بر صفـحه (\#)، شار تغيير نموده و باءث ايجاد نيروى محر كهى القايى در يـى مدار بستهى رسانا خواهد شد شد

تشريح قانون لنز

 مى شود. جريان الكتر يكى القا شده، در اطراف مدار، ميدان مغناطيسى بهو بجود مى آورد كه آن را را ميدان مغناطيسى القايى ناميده و با BL

 اگر شار گاهش يابد با ايجاد ميدان القايى در جهت ميدان اصلى، با كاهش شار مـخالفت خواهد اهـ كرد.

حركت سيم رسانا در ميدان
 مغناطيسى به حر كت درآيد، نيروى محر كهاى در دو سر آن آن القا خواهد شد $\varepsilon=\mathrm{LVB}$

سوى جريان القايى در ميله

 سوى جريان القايى را نشان خران انواهد داد

نيروى محركهى خود القايى

 محاسبه است:

مدت تغيير جريان(ثانيه)

جهت نيروى محركهى خودالقايى

 خودالقايى هم جهت نيروى مـحر كهى اصلى مدار (نيروى مـحر كهى مولدها الـىا) ايـجاد مى شود.

ضريب خودالقايى سيملوله
ضريب خو دالقايى سيم يّتج (L) كميتى است كه فقط به مشخخصات ساختمانى سيملوله بستگى دارد و و با تغييرات شدت
 حلقه، طول سيمیيّت و جنس هسته) از رابطهى زير قابل مححاسبه است. تعداد حلقه ها

انرڭى مغناطيسى ذخيره شده در يک سيمپیيیج
 مغناطيسى ذخيره مى شود كه طبق رابطهى زير قابل مـحاسبه است. (ز) $\leftarrow \mathrm{U}=\frac{1}{r} \mathrm{LI}^{r} \Rightarrow \Delta \mathrm{U}=\frac{1}{r} \mathrm{~L}\left(\mathrm{I}_{Y}^{r}-\mathrm{I}_{\mathrm{l}}^{r}\right)$

مولد جريان متناوب

 مى باشـد .

$$
\begin{aligned}
& \varphi=\mathrm{BA} \operatorname{Cos}(\omega \mathrm{t}) \Rightarrow \varphi=\varphi_{\mathrm{m}} \operatorname{Cos} \omega \mathrm{t} \quad \omega=\frac{r \pi}{\mathrm{~T}}=r \pi \nu \\
& \varepsilon=-\mathrm{N} \frac{\mathrm{~d} \varphi}{\mathrm{dt}} \Rightarrow \varepsilon=\mathrm{NBA}(\omega) \operatorname{Sin}(\omega \mathrm{t}) \Rightarrow \varepsilon=\varepsilon_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \\
& \varepsilon_{\mathrm{m}}=\mathrm{NBAA} \omega
\end{aligned}
$$

جريان القايى متناوب طبق رابطهى I میباشد. يعنى وقتى •

 مى شود.

 پّس نيروى محر كهى القايى كل برابر است با تعداد حقلهها ضر ب در نيروى محر كهى القايى هر حلقه.

$$
\varepsilon=-\mathrm{N} \frac{\mathrm{~d} \varphi}{\mathrm{dt}}
$$

^ا- يكاى خو دالقايىى (هانرى)
 يـى ولت در آن القا شود.

